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A class of homogeneous Einstein-Maxwell fields 
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Birmingham H4 7ET, UK 

Received 27 January 1978 

Abstract. I consider solutions of the Einstein-Maxwell field equations satisfying the 
conditions 

F t i k l k  = fF+ ,,, FQ;kn Ir = gF; 

where F ;  is the self-dual Maxwell bivector and I' and n' are the principal null vectors of 
F t .  The fields are algebraically general and the most general solution is found in closed 
form when I' and n' have non-zero twist. Several twist-free solutions are also obtained. 
Vacuum space-times admitting a test Maxwell field are also considered. In all cases the 
metric admits a three-parameter group of motions acting transitively on three-dimensional 
orbits. Fields satisfying the dual conditions with I' and n' replaced by mi and A' are also 
investigated and similar results are obtained. 

1. Introduction 

Recently a number of authors have considered Einstein-Maxwell fields in which the 
principal null tetrad (Ii, n', mi, A') of the Maxwell bivector is parallel propagated 
along its two real vectors I' and n'. The solution for the case where I '  and n'  are 
twist-free has been obtained by Tariq and Tupper (1974, 1975). The most general 
divergence-free solutions have been found by McLenaghan and Tariq (1975) and 
independently by Tupper (1976). The author (Barnes 1976) has considered Maxwell 
fields satisfying the dual conditions that the null tetrad is parallel propagated along its 
two complex vectors m i  and A'. The solution for the case where m' and A '  are 
twist-free was found in closed form. Subsequently it has been shown by McLenaghan 
and Tariq (1976) and Barnes (1977) that the three solutions mentioned above are in 
fact the only parallel propagated solutions. 

The conditions that the null tetrad is parallel propagated along 1' and n' (or 
equivalently along any direction in the timelike eigenblade of F ;  ) imply the following 
restrictions on the spin coefficients: 

K = J . / = T = 7 = 0  (1 . la)  

E = y = O .  ( l . l b )  

Here and in what follows I use the spin coefficient formalism and notation of Newman 
and Penrose (1962) (referred to below as NP). The analogous conditions for parallel 
propagation of the tetrad along directions lying in the space-like eigenblade of F ;  are 

a = A  = p  = p  = O  (1.2a) 

a = p = o .  (1.26) 
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However, as McLenaghan and Tariq (1976) have shown it is convenient to employ a 
tetrad for which only ( 1 . 1 ~ )  or ( 1 . 2 ~ )  is valid. These two equations are invariant 
under the tetrad rescaling: 

(1.3) =A/ ' ,  ;i = ~ - 1 ~ i ,  6 I = eiem I 

whereas (1.lb) and (1.2b) are not. The existence of a rescaling for which ( l . l b )  (or 
(1.2b)) is valid leads to an integrability condition relating the Weyl tensor component 
*2 and the electromagnetic field strength d1 namely: &.+ q51$1 = 0 (or $z-c$I&I= 0 
in the space-like case). 

Whilst the conditions ( 1 . 1 ~ )  or ( 1 . 2 ~ )  seem quite natural and are satisfied for 
example by the Reissner-Nordstrom solution, the integrability conditions or 
equivalently (1.lb) and (1.2b) are restrictive and lead to solutions whose physical 
significance is unclear. Furthermore, the integrability conditions do not allow the 
electromagnetic field to vanish unless the Weyl tensor is type N. 

In this paper the integrability conditions are discarded but ( 1 . 1 ~ )  (or ( 1 . 2 ~ ) )  is 
retained. Fields satisfying either of these equations will be called weakly parallel 
propagated. 

When the twists of I '  and n' (respectively of m i  and f i i )  are non-zero the fields 
have many properties in common with parallel-propagated fields and in fact all the 
solutions can be obtained in closed form. The methods of this paper are also applic- 
able to vacuum fields which admit a weakly parallel-propagated test electromagnetic 
field. The vacuum solutions of Kasner (1925) are shown to be of this type. 

A somewhat curious feature is that the apparently restrictive condition that the 
twists of I' and n i  are zero in fact leads to a wider class of solutions. This arises 
because the integrability conditions for the fields involve the twist p - p (or 7 + e) in a 
crucial way and they are more easily satisfied when the twist vanishes. Two distinct 
classes of twist-free solutions are considered in detail in this paper, but it appears that 
a much wider class of twist-free solutions exist which are not amenable to the analysis 
used below. 

2. The time-like case 

The self-dual Maxwell bivector, which I assume is non-null, can be written in the form 

Fi = 41(n$j~  + m['fiil) (2.1) 

where q51 is the complex field strength and l', ni, m i  and f i '  form a principal null tetrad 
of the electromagnetic field and satisfy the usual orthonormality conditions. Equation 
(2.1) defines the tetrad only up to transformations of the form (1.3). For Einstein- 
Maxwell fields the only non-zero component of the Ricci tensor is 411 = && whereas 
for a vacuum space-time the Ricci tensor is of course zero. 

As equations (1 . la )  and (2.1) are invariant under the tetrad rescaling (1.3) the 
scaling factors A and 8 can be chosen to simplify the remaining spin coefficient 
equations. By a straightforward generalisation of an argument of McLenaghan and 
Tariq (1976) and Barnes (1977) it can be shown that a tetrad exists such that 

P = WCL, U = wA, E = w y ,  (Y=p=o,  

*o = *4, 41 = 43 = 0, (2.2) 
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and such that for any spin coeffibient x 

6x = 8; = (D + w A ) x  = 0 ,  (2 .3 )  

where w = * l .  
The remaining Ricci identities are 

Dp = p * + u @ + p ( e + E )  ( 2 . 4 ~ )  

Du = p ( u  +e)- (3E - F)u ( 2 . 4 b )  

DE =--E(€ +S)+2w(J/z+c$11) ( 2 . 4 ~ )  

wJ/* = p(p  - p)+ U(@ - fT)+ 2 P ( E  + 4) ( 2 . 4 d )  

w&1= U@ - p p  + 2pE +2pE ( 2 . 4 e )  

= p a  - PU - 2 ( 3 ~  - E)u.  ( 2 . 4 f )  

If the twist of I '  vanishes the above results are not necessarily valid and it is 
necessary to assume in addition that U@ = A I  and fio = $14 in order to derive them. 
Below we will only consider twist-free fields for which these additional assumptions 
are valid. 

If the shear of I '  is zero the Weyl tensor is algebraically special. Equation (4 .2 )  of 
NP reveals that the field is type D if p f 0 or type N if p = 0. All type D vacuum and 
Einstein-Maxwell fields have been found by Kinnersley (1969a, 1969b) and 
consequently only algebraically general solutions will be considered below. 

If the commutator relations ( 4 . 4 )  of NP are applied to the coordinate functions x i  
one can deduce that coordinates exist such that 

( 2 . 5 )  

where Q = expd ( E  +4)  du). One also obtains differential equations for the tetrad 
vector m' from which one can deduce by an argument similar to that of Barnes (1977)  
that 

( 2 . 6 ~ )  

( 2 . 6 6 )  

(D  + E + E ) ( v  - 5) = 0 

(D + E  + q ( p  - p  - 2E + 2 4  = 0. 

A lengthy argument then shows that ( 2 . 4 )  and (2 .6 )  are consistent only in the 
following two cases: 

Case 1 p - p  = 2(E -Z), U = @  

Case 2 p - p = - p .- 0, u + @ = O .  

( 2 . 7 ~ )  

(2 .76 )  

From (2.3), (2 .4) ,  and (2 .5 )  it follows that all the spin coeficients depend only on the 
coordinate U. In 0 3 I assume that at least one of the spin coefficients is not constant. It 
turns out that the only solution ruled out by this assumption is the parallel-propagated 
divergence-free solution of McLenaghan and Tariq (1975) .  
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3. The solutions for the time-like case 

3.1. Case 1 

On noting ( 2 . 7 ~ )  the integration of the differential equations for the vectors m i  and 
f i i  is easily completed. 

The results are 

& m ' T =  a P- ' -+ iR- ' ( - -2wDx- )  a a a 
ax ax a y  av 

where 

and D is a constant which vanishes if the twists of I' and ni are zero. The metric takes 
the form 

(3 .2 )  
du 
dt 

ds2 = (2wQ dv + 2DQx dy )( - dt + Q dv + 2wDQ dy - P 2  dx2 - R 2  dy2 

where t = t ( u )  is a new coordinate introduced for later convenience. 

Killing vectors 
This metric admits a three-parameter local isometry group generated by the 

a a a a 
av ay ax av 

XI =-, x, = -, X 3 = - - 2 w D y -  

which form a basis of a Lie algebra of Bianchi type 2 if D # 0 or Bianchi type 1 (i.e. 
Abelian) if D = 0. The orbits are time-like if w = +1 and space-like if U = -1. 

To complete the solution it remains to solve equations ( 2 . 4 a , b ,  c) for p, a and E 

and to evaluate the expressions for the metric functions P, Q and R.  This is greatly 
facilitated by noting the simple integral 

( 3 . 3 )  2(E + r )  = p + p  - 2 a a  

where a is a constant. A number of subclasses arise. 

3.1.1. D # 0. For the generic case D f 0 the results are 

dt 
du 
- = [2ct + b (1 + t2)]a 

2ct + b ( l  + t 2 )  
1 + t 2  

p-p=2i(7 

c ( 1 -  t 2 )  + a (1 + t 2 )  
1 + t 2  

p + p = 2 u  

( 3 . 4 a )  

(3 .4b )  

(3 .4c )  

( 3 . 4 d )  
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where b and c = (a2  + b 2  - 1)”’ are constants and where F ( t )  is given by 

F( t )  = 

when b = 0 

when b # 0 and la I = 1 

1307 

The metric functions are 

The curvature tensor components can easily be calculated from (2.4d, e, f ) .  For 
example the Ricci tensor is given by 

2 2ct + b ( l +  t 2 )  
I f f 2  * 

~ 4 1 1 = 2 b o  

Consequently if b = 0 the space-time is empty. The electromagnetic field strength is 
given by 

1 - t 2 -  2it 
1 + t 2  

41 = do eip 

where 40 = 4411 for Einstein-Maxwell fields and c $ ~  = At1fa/J(a2-1) / ( 1 +  t 2 )  for the 
test-field case and where p and A are constants, 

3.1.2. D = 0. For the generic twist-free case (D  = 0) the results are 

dt  
-= ( t 2 +  1 - a2 )a  
du 

U =  b ( t 2 + 1 - u 2 ) F ( t )  

p = ( t  + u ) o  

where b is a constant and F ( t )  is given by 

for la/ = 1 

(3.6a) 

(3.66) 

( 3 . 6 ~ )  
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The Ricci tensor and electromagnetic field strength are 

411 = a2(t2 + 1 - a ') d1 = Jdl1 eip 

where p is a constant 

3.1.3. The method used to derive the results for classes 1 and 2 above is not valid if p 
is a constant multiple of U. In this case the twisting solutions are given by 

1 
dt  E 

2t' 2 t '  du 
-= iD 

E = -  a=-  -1+2iD 
P =  2t 7 

where E = J ( 4 D 2 +  1). The functions appearing in the metric are given by 

2. p = t ( E - 1 ) / 2  R = ,+(€+I)/ Q=1, (3.9) 

The Ricci tensor and electromagnetic field strength are given by 

3.1.4. The twist-free case is given by 

(3.10) 
dt  -= 1 

(3C2 + 1)t' du 
- 2 c 2  -2c 1-c2 

(3C2 + 1)t' 
2E = U =  

= (3C2+ 1)t' 

c2- 1 2(C2- C )  
In t ,  (3.11) 

3 C 2 + 1  
lnQ=- l n R =  3C2+ 1 In " In t, 

2(C2 + C )  
3 C 2 +  1 

In P = 

where C is a constant. The Ricci tensor vanishes for this metric which is a vacuum 
Kasner metric. 

3.2. Case 2. 

In this case equation (2.76) is valid. The tetrad vectors 1' and n '  are given by ( 2 . 5 ) .  
The complex tetrad vector m' and metric are given by 

(3.12a) 

(3.12b) 
du 
dt 

d s 2 = 2 Q - d t d v + 2 w Q 2 d v 2 - P 2 ( e - 2 Z  dx2+e2= dy2) 

where P = exp(-lp du), 2 = 2E0v - i  jv du and Xo is a constant. This metric like (3.2) 
admits a three-parameter isometry group with three-dimensional orbits generated by 
the Killing vectors 

a 7 ( ax ay  
a a a 

X 3 = - - 2 &  x--y- x1= -, x2 = -, 
d U  a y  av 

which form a basis of a Lie algebra of Bianchi type 6. The orbits are time-like if 
w = +1 and space-like if w = -1. 
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I have been unable to integrate (2.4) when dlI  # 0. However, the general vacuum 
solution is 

( 3 . 1 3 ~ )  dt 
- = -cot exp(it-')[t3(t - 4)5]1/8 
du 

(3.136) 

( 3 . 1 3 ~ )  

(3.13d) 

( 3 . 1 4 ~ )  

(3.14b) 

(3 .14~)  

4. The space-like case 

In this section I consider fields which satisfy ( 1 . 2 ~ )  or equivalently 

F;;km = fF; ,  F;:kiii = gF;. 

Most of the results may be obtained from those in the time-like case by formally 
replacing I' by m' and n' by -ei and vice versa as in Barnes (1976). Corresponding 
to (2.2) and (2.3) we have 

where w = *1 and for any spin coefficient x 

Dx = Ax = (6 + 6 ) x  = 0. (4.2) 

As in time-like case difficulties arise in deriving (4.1) and (4.2) when the twist of m i  
is zero (r  + ii = 0). However, we will only consider those twist-free solutions for which 
(4.1) and (4.2) are valid. If K = r = 0 the metric is Petrov type N. However, if K = 0 
but r # 0 we cannot conclude that the field is type D in the time-like case. It seems 
probable that type 2 fields exist in the space-like case. The above remark shows that 
some care must be exercised when dualising proofs. As in the time-like case I now 
restrict attention to algebraically general fields. 

Coordinates exist such that 

where P = exp(iJ2 1 (a - & )  dy) and all spin coefficients are functions of the coor- 
dinate y only. Just as in the time-like case two classes of solution arise: 

Case 1 K + K = O ,  r +7  = 2(a + E )  

Case 2 K - K = O ,  r + 7 =  CY + E  = 0. 

( 4 . 4 ~ )  

(4.4b) 
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4.1. Case 1 

The real null vectors I ’  and n‘ are given by 

a G,(B)(-+ a 2 J~Du-)] a 
ax av ax 

n i a  -=eA[wG,(B)-+F,(B)( -+2J2Du-) ]  a a a 
ax‘ au a0 ax 

where 

(4.5a) 

(4.5b) 

B = i  ~ J 2 d y  I A =, (T  - ?)J2dy, 
21 ‘ I  

and D is a constant which vanishes if m i  is twist-free (i.e. T + ?  = 0). For w = 

+1, F,(B) = cosh B and G,(B) = sinh B whereas for w = -1, F,(B) = cos B and 
G,(B) = sin B. The metric is 
ds Z = -e-zAG,(2B)(du2+w dv’) 

(4.6) + 2  e-2AF,(2B)du dv-Pz(dx-2J2Du dY d z z  
dz 

where z = z(y) is a new coordinate introduced for later convenience. This metric too 
admits a three-parameter isometry group generated by the Killing vectors 

a a a a 
ax av au ax XI = -, xz = -, X ,  = -+ 2 J2Dv  -. (4.7) 

The Lie algebra is Bianchi type 2 if D # 0 and type 1 if D = 0. The orbits are time-like 
hypersurfaces. 

Corresponding to (3.3) the Ricci identities admit the simple integral: 

2(a -E)=T-?-2UK. 

A number of subclasses of solution arise as in the time-like case 1 solutions. 

4.1.1. 
1 dz 

dy 
-=-iK[2cz+b(l+zz)] 

K = iD( 
1 + z z  

1 [C(l-Zz)+U(l+Zz)]K 
-(T-F)= 
2 1 + z z  

1 -[2cz + b(1 +Z2)]iK - (7 + f) = 
2 1 + z z  

where 

rZa’J(a2-u)  for b = 0 

( 4 . 8 ~ )  

(4.86) 

( 4 . 8 ~ )  

(4.8d) 

where b and c = J(az+ b z  - U )  are real constants. 
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The Ricci tensor is given by 

2cz+b(1+z2)  
411 = 2b~’ (  

1 + z 2  

and the space-time is empty if b = 0. The electromagnetic field strength is given by 
2 

ip 1-2  -2iz 
l + z 2  41 = 4411 e 

for the Einstein-Maxwell case and by 

for the test-field case. The functions P, A and B which appear in the metric are given 
by 

1 
B=-1nF. 

1 
A = - 1 n F - l n P ,  

P = (  l + Z 2  2 2a 

4.1.2. The generic twist-free solutions are given by 

1 dz 2 2 - -=-iK(Z + w - a  ) 
J 2  dy 

(4.9) 

( 4 . 1 0 ~ )  

K =ib(z2+w -u’>’/’F(z) (4.106) 

$ ( T  - 7) = (2 + U ) K  (4 .10~)  

where a and b are constants and F ( z )  = { [ z  - J(a2 - w ) ] / [ z  + J(a2-  w ) ] ) ~ ’ ~ ’ ( ~ * - ~ )  . The 
metric functions in this case are 

(4.11) 
1 1 
2 2 a  

P=(z2+W-a2)-1/2,  A = - l n F ( z ) - l n P ,  B=- lnF(z )  

The Ricci tensor and electromagnetic field strength are 

41 = J411 eip 4 l 1 = K 2 ( Z 2 + W - U  2 ) 

There are no twisting solutions for which T is a constant multiple of K ,  but a 
twist-free analogue of the solution given in (3.10,ll) does exist. 

4.1.3. This field like its timelike analogue is of Kasner vacuum type and the metric is 
diagonalisable if w = +l. The spin coefficients and metric functions are given by 

-2iC -2iC 
( 3 C 2 + w ) J 2 z ’  ( 3 c 2  + w ) J 2 z ’  

K =  7 =  

dz -= 1 -i(C2 - w )  

(3 c2 + w ) J 2 z  ’ 
2 a  = 

dY 
- 2 c  B=- In z.  - 2 c 2  A=- C 2 - w  

3 c 2 + w  3 c 2 + w  In z ,  3 c 2 + w  
lnP=- In z ,  

(4.12) 

(4.13) 
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4.1.4. A twist-free vacuum field of Kasner type also exists in which all the spin 
coefficients are constants: 

K = J&ic i = ic/ J 2  a = ic/ J 2 ,  dzldy = 1 (4.14) 

p = e2cz, A = Cz, B = J ~ C Z  (4.15) 

where C is a real constant and in (4.5) and (4.6) w = -1. The metric admits a 
four-parameter transitive group of motions generated by the Killing vectors XI, X Z  
and X ,  of (4.7) together with 

The complete Lie algebra is type 44 in the classification of four-dimensional algebras 
given in Petrov (1969). It is the only solution which arises from the assumption that all 
the spin coefficients are constants. It is perhaps worth noting that this metric is not 
dual to the parallel-propagated field of McLenaghan and Tariq (1975) which is the 
only field in the time-like case which has all its spin coefficients constant. 

4.2. Case 2 

For this class of solutions (4.4b) is valid. The complex tetrad vector m' is still given by 
equation (4.3). The real null vectors and the metric take the following form: 

a a 
1' 7 = A -' F-, (42 Kox ) - + G-, ( J2  Kox )-) ' a  ax ( au  av 

a a a 
ax' au  av 

n I - = A -'( -wG- ,  (J2Kox)- + F-, (JZKOx)-) 

+2A2F-,(2J2Kox)du dv -P2  d x 2 - ( g ) 2  dz2 

( 4 . 1 6 ~ )  

(4.16b) 

(4.17) 

where 

A = e x p ( i I  d 2 d y ) ,  P=exp(-2i[  a J 2 d y ) ,  K=KoIP  

and where F and G are defined as in equation (4.5). 

vectors 
This metric admits a three-parameter isometry group generated by the Killing 

The Lie algebra is Bianchi type 6 if w = -1 or Bianchi type 7 if w = + 1 .  The orbits are 
three-dimensional time-like hypersurfaces. 

I have again been unable to integrate the Ricci identities for a, K and T except for 
the vacuum case. The general vacuum solution is given by 

7- = (Yz, ( 4 . 1 8 ~ )  
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1 dz 
--= - w ~ ~ z  exp($z-')[wz3(z- 4)s]1'R 
J 2  dy 

w ( 2  - 4) 1'8 

(Y = iKo exp($z-')[wz'(z -4)3]-"s, 

(4.18b) 

A=(,-) , P = e x p ( + z - ' ) ( y )  , (4.19) 
w ( 2  - 4) 

5. Summary and conclusions 

Weakly parallel-propagated fields have been considered and the general solutions 
with non-zero twist have been found explicitly for both the time-like and space-like 
cases. In addition two distinct classes of twist-free solution have been obtained. In all 
cases the metric admits a three-parameter group of motions with three-dimensional 
orbits. The solutions are considerably more general than the parallel-propagated 
solutions already known. The solutions with non-zero twist involve three arbitrary 
constants (four if one includes the complexion p of the electromagnetic field) 
compared with one arbitrary constant in the solution of McLenaghan and Tariq 
(1975). The twist-free solutions involve two arbitrary constants compared with none 
in the twist-free parallel propagated solutions of Tariq and Tupper (1975) and Barnes 
(1976). 

From a physical viewpoint the most important solutions are those in the time-like 
case with w = -1. The orbits of the isometry group are space-like in this case and the 
solutions represent homogeneous vacuum or electrovac cosmological models. The 
metric (3.2) can be written in a more familiar form without cross-terms involving du 
by means of the coordinate transformation dz = du +$a-' du. The coordinate U is 
(apart from a constant factor) a proper-time coordinate whose level surfaces are the 
surfaces of homogeneity. However, it seems more convenient to retain the coordinate 
t introduced in (3.2) as the functions appearing in the metric can be written down 
explicitly whereas they can usually only be written as implicit functions of U .  The 
twisting solutions are Bianchi type 2 and the twist-free solutions are Bianchi type 1 or 
6. 

The analysis used in this paper can be extended to include a perfect fluid flow 
which is aligned with the electromagnetic field. A further paper is in preparation in 
which the perfect fluid fields are presented. The dynamics of the solutions will also be 
investigated. 

Acknowledgments 

I would like to thank Drs A MacDonald and P Florides for useful discussions. The 
major part of this work was carried out whilst I was post-doctoral fellow in the School 
of Mathematics, Trinity College, Dublin. Financial support from the Department of 
Education, Dublin is gratefully acknowledged. 

References 
Barnes A 1976 J. Phys. A:  Math. Gen. 9 1887-94 
- 1977 J. Phys. A:  Math. Gen. 10 755-63 



1314 A Barnes 

Kasner E 1925 Trans. Am. Math. Soc. 27 155-62 
Kinnersley W 1969a J. Math. Phys. 10 1195-203 
- 1969b PhD Thesis, California Institute of Technology 
McLenaghan R and Tariq N 1975 J. Math. Phys. 16 2306-12 
- 1976 J. Math. Phys. 17 2192-7 
Newman E T and Penrose R 1962 J. Marh. Phys. 3 566-78 
Petrov A Z 1969 Einstein Spaces (London: Pergamon) p 64 
Tariq N and Tupper B 0 J 1974 Tensor New Ser. 28 83-101 
- 1975 Gen. Rel. Gran 6 345-60 
Tupper B 0 J 1976 Gen. Re[. Grav. 7 479-86 


